High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements.
نویسندگان
چکیده
The locus sun on the short arm of tomato chromosome 7 controls morphology of the fruit. Alleles from wild relatives impart a round shape, while alleles from certain cultivated varieties impart an oval shape typical of roma-type tomatoes. We fine mapped the locus in two populations and investigated the genome organization of the region spanning and flanking sun. The first high-resolution genetic map of the sun locus was constructed using a nearly isogenic F(2) population derived from a cross between Lycopersicon pennellii introgression line IL7-4 and L. esculentum cv Sun1642. The mapping combined with results from pachytene FISH experiments demonstrated that the top of chromosome 7 is inverted in L. pennellii accession LA716. sun was located close to the chromosomal breakpoint and within the inversion, thereby precluding map-based cloning of the gene using this population. The fruit-shape locus was subsequently fine mapped in a population derived from a cross between L. esculentum Sun1642 and L. pimpinellifolium LA1589. Chromosome walking using clones identified from several large genomic insert libraries resulted in two noncontiguous contigs flanking sun. Fiber-FISH analysis showed that distance between the two contigs measured 68 kb in L. esculentum Sun1642 and 38 kb in L. pimpinellifolium LA1589, respectively. The sun locus mapped between the two contigs, suggesting that allelic variation at this locus may be due to an insertion/deletion event. The results demonstrate that sun is located in a highly dynamic region of the tomato genome.
منابع مشابه
Cross-species bacterial artificial chromosome-fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements.
Ongoing genomics projects of tomato (Solanum lycopersicum) and potato (S. tuberosum) are providing unique tools for comparative mapping studies in Solanaceae. At the chromosomal level, bacterial artificial chromosomes (BACs) can be positioned on pachytene complements by fluorescence in situ hybridization (FISH) on homeologous chromosomes of related species. Here we present results of such a cro...
متن کاملIdentification of Linked Markers for Delayed Fruit Ripening in Tomato Using Simple Sequence Repeat (SSR) Markers
Tomato (Solanum lycopersicum L.) is an important vegetable crop and acts as model plant for fruit development studies. Besides that, post-harvest damage is a devastating phenomenon often associated with ripening process in tomato which in turn leads to greater yield loss. Understanding the genetics, molecular and biochemical pathways is the key to overcome the existing situation. In th...
متن کاملChromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato.
Potato (Solanum tuberosum) has the densest genetic linkage map and one of the earliest established cytogenetic maps among all plant species. However, there has been limited effort to integrate these maps. Here, we report fluorescence in situ hybridization (FISH) mapping of 30 genetic marker-anchored bacterial artificial chromosome (BAC) clones on the pachytene chromosome 6 of potato. The FISH m...
متن کاملHigh-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus.
Fruit firmness in tomato (Solanum lycopersicum) is determined by a number of factors including cell wall structure, turgor, and cuticle properties. Firmness is a complex polygenic trait involving the coregulation of many genes and has proved especially challenging to unravel. In this study, a quantitative trait locus (QTL) for fruit firmness was mapped to tomato chromosome 2 using the Zamir Sol...
متن کاملدورگهسازی در محل؛ اصول و کاربردها : مقاله مروری
In situ hybridization (ISH) is a method that uses labeled complementary single strand DNA or RNA to localize specific DNA or RNA sequences in an intact cell or in a fixed tissue section. The main steps of ISH consist of: probe selection, tissue or sample preparation, pre-hybridization treatment, hybridization and washing, detection and control procedure. Probe selection is one of the important ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 168 4 شماره
صفحات -
تاریخ انتشار 2004